Statistical method for sparse coding of speech including a linear predictive model
نویسندگان
چکیده
Recently, different methods for obtaining sparse representations of a signal using dictionaries of waveforms have been studied. They are often motivated by the way the brain seems to process certain sensory signals. Algorithms have been developed using a specific criterion to choose the waveforms occurring in the representation. The waveforms are choosen from a fixed dictionary and some algorithms also construct them as a part of the method. In the case of speech signals, most approaches do not take into consideration the important temporal correlations that are exhibited. It is known that these correlations are well approximated by linear models. Incorporating this a priori knowledge of the signal can facilitate the search for a suitable representation solution and also can help with its interpretation. Lewicki proposed a method to solve the noisy and overcomplete independent component analysis problem. In the present paper we propose a modification of this statistical technique for obtaining a sparse representation using a generative parametric model. The representations obtained with the method proposed here and other techniques are applied to artificial data and real speech signals, and compared using different coding costs and sparsity measures. The results show that the proposed method achieves more efficient representations of these signals compared to the others. A qualitative analysis of these results is also presented, which suggests that the restriction imposed by the parametric model is helpful in discovering meaningful characteristics of the signals. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSparsity in Linear Predictive Coding of Speech
This thesis deals with developing improved techniques for speech coding based on the recent developments in sparse signal representation. In particular, this work is motivated by the need to address some of the limitations of the wellknown linear prediction (LP) model currently applied in many modern speech coders. In the first part of the thesis, we provide an overview of Sparse Linear Predict...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملFast algorithms for high-order sparse linear prediction with applications to speech processing
In speech processing applications, imposing sparsity constraints on high-order linear prediction coefficients and prediction residuals has proven successful in overcoming some of the limitation of conventional linear predictive modeling. However, this modeling scheme, named sparse linear prediction, is generally formulated as a linear programming problem that comes at the expenses of a much hig...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006